Course Code	22MEMD2T5B	Year	Ι	Semester	II	
Course	Programme	Branch	MF	Course Type	Theory	
Category	Elective	Drahen	WIL	course rype	Theory	
Credits	4	L-T-P	4-0-0	Prerequisites	Material Science and Metallurgy	
Continuous Internal Evaluation:	40	Semester End Evaluation:	60	Total Marks:	100	

THEORY OF PLATES AND SHELLS

Course outcomes: At the end of the course, the student will be able to:

СО	Statement	BTL	Units
CO1	Understand the Simple bending of Plates and Different Boundary Conditions for plates	L2	1
CO2	Analyze circular plates subjected to different kinds of loads	L4	2
CO3	Understand the concept of Material Orthotropy, Structural Orthotropy and Plates on elastic	L2	3
CO4	Design various types of shells structures and folded pipes.	L4	4

Contribution of Course outcomes towards achievement of programme outcomes & Strength of correlations (High:3, Medium: 2, Low:1)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3	3	3				2			1		2	3	1
CO 2	3	3	3				2			1		2	3	1
CO 3	3	3	3				2			1		2	3	1
CO 4	3	3	3				2			1		2	3	1

Syllabus							
Unit	it Contents						
		СО					
1	Simple bending of Plates, Assumptions in thin plate theory, Different	CO1					
	relationships, Different Boundary Conditions for plates, Plates subjected to						
	lateral loads, Navier's method for simply supported plates, Levy's method for						
	general plates, Example problems with different types of loading.						
2	Circular plates subjected to Axi-symmetrical loads, concentrated load,	CO2					
	uniformly distributed load and varying load, Annular circular plate with end						

	moments, Rayleigh-Ritz method, Application to different problems, Finite			
	difference method, Finite element methodology for plates.			
2	Orthotropic Plates, Bending of anisotropic plates with emphasis on orthotropic	CO3		
3	plates, Material Orthotropy, Structural Orthotropy, Plates on elastic foundation			
	Shells- Classification of shells - Membrane and bending theory for singly	CO4		
4	curved and doubly curved shells - Various approximations -Analysis of folded			
	plates			

Learning Resources

Text Book(s):

1. Theory and Analysis of Plates by Rudolph Szilard, Prentice Hall, New Jercy 1986.

2. Theory of Plates and Shells by Timoshenko S.P and Woinowsky Krieger, McGraw Hill, 1984.

3. Design and Construction of Concrete Shell Roofs by G. S. Ramaswamy, CBS Publishers. 2005.

References:

1. Theory and Analysis of Elastic Plates and Shells by J N Reddy, CRC Press, 2007.

2. Theory of Plates by K Chandra Shekhara, University Press, Hyderabad, 2001

Course coordinator:

HOD